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Abstract
Irreversible aggregation processes involving reactive and frozen clusters are
investigated using the rate equation approach. In aggregation events, two
clusters join irreversibly to form a larger cluster; additionally, reactive clusters
may spontaneously freeze. Frozen clusters do not participate in merger
events. Generally, freezing controls the nature of the aggregation process,
as demonstrated by the final distribution of frozen clusters. The cluster mass
distribution has a power-law tail, Fk ∼ k−γ , when the freezing process is
sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant
and the product aggregation rates, respectively. For the latter case, the standard
polymerization model, either no gels, or a single gel, or even multiple gels, may
be produced.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Aggregation is a fundamental irreversible process in which physical objects merge irreversibly
to form larger objects. Aggregation has numerous applications ranging from astronomy,
where planetary systems form via collisions of planetesimals, to atmospheric science [1, 2],
to chemical physics, where polymeric chains chemically bond and form polymeric networks
or gels [3–5], to computer science [6–8].

The standard framework for modelling aggregation is as follows. Initially, the system
consists of a large number of identical molecular units (‘monomers’). A cluster (‘polymer’)
is composed of an integer number of monomers, termed the cluster mass. In each aggregation
event, a pair of clusters merges, thereby forming a larger cluster whose mass equals the sum
of the two original masses.

When the number of aggregation events is unlimited, the system condenses into a single
cluster. However, in most practical applications, other processes intervene well before this, and
as a result the final state has multiple clusters, rather than a single condensate. For example,
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fragmentation of large clusters into smaller clusters is one mechanism that may counterbalance
aggregation and prevent condensation.

In this study, we focus on another control mechanism: freezing. We use the generic term
freezing to describe situations where there are two types of clusters: reactive clusters that
participate in aggregation events and passive clusters that do not participate in aggregation
events.

In particular, we consider the case where reactive clusters have a finite lifetime. In our
model, reactive clusters spontaneously turn into frozen clusters. Spontaneous freezing can
occur via various mechanisms. For instance, the environment may contain ‘traps’ that absorb
the diffusing polymers. In this situation, the reactive clusters are the free (mobile) polymers
and the frozen clusters are the polymers adsorbed to the trap surface. Another example is a
system of linear polymers with reactive end monomers. In a merging event two different chains
chemically bond via the end monomers, while in a freezing event the two end monomers of
the same chain bond to form a ring. Rings can no longer participate in aggregation events.
Thus, in this case the linear polymers are reactive and the ring polymers are frozen.

In aggregation with freezing, it is natural to consider the initial condition where there are
reactive clusters only. Of course, the system ends with frozen clusters only. Of special interest
is the final mass distribution of frozen clusters. In this study, we address the two classical
aggregation rates.

First, we study the simplest aggregation process where the aggregation rate is independent
of the cluster mass. We find that the mass distribution of reactive clusters decays exponentially
with the cluster mass. In general, the mass density of frozen clusters also decays exponentially
with the cluster mass. However, when the freezing rate is very small, there is a power-law
behaviour, Fk ∼ k−1, over a substantial range of masses.

Second, we consider the case where the aggregation rate is proportional to the product
of the masses, a process that is widely used to model polymerization and gelation. We find
that when the freezing rate exceeds a certain threshold no gels form, while when the freezing
rate is below this threshold at least one gel forms. Interestingly, the number of gels produced
fluctuates from realization to realization. For supercritical freezing rates, the mass distribution
of frozen clusters decays exponentially, while below this threshold it decays algebraically,
Fk ∼ k−3 [9].

2. The master equations

We analyse the stochastic process of aggregation with freezing using the rate equation approach.
Let us first consider the evolution of reactive clusters. In aggregation processes, two reactive
clusters of masses i and j merge to form a larger reactive cluster of mass i + j . The aggregation
rate K (i, j) is a function of the two cluster masses. The freezing process is random: reactive
clusters may spontaneously freeze with a constant rate. This freezing rate fk may be mass
dependent. Therefore, the mass distribution Rk(t) of reactive clusters of mass k at time t
evolves according to the generalized Smoluchowski equation

dRk

dt
= 1

2

∑
i+ j=k

K (i, j)Ri R j − Rk

∞∑
i=1

K (i, k)Ri − fk Rk . (1)

The first two terms account for gain and loss of clusters of mass k, and the last term accounts
for loss due to freezing. This master equation assumes perfect mixing, as the probability of
finding two clusters at the same position is a product of the probabilities of finding each of
the clusters independently at the same position. We restrict our attention to the natural case of
monodisperse initial condition, Rk(0) = δk,0.
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The mass distribution of frozen clusters Fk(t) is coupled to the mass distribution of reactive
clusters according to the rate equation

dFk

dt
= fk Rk . (2)

It is simple to check that the total mass density
∑

k k(Rk + Fk) = 1 is conserved by the evolution
equations (1) and (2). Initially, there are no frozen clusters so Fk(0) = 0. Eventually, all
clusters become frozen, so the final mass distribution Fk(∞) of frozen clusters is of particular
interest.

The master equations (1) and (2) are sets of infinitely many coupled nonlinear differential
equations, and they are generally unsolvable. Even in the absence of freezing, these equations
are solvable only for special aggregation rates [1, 6, 10]. The three classical solvable cases
are the constant rate K (i, j) = const, the sum rate K (i, j) = i + j , and the product rate
K (i, j) = i j . These cases represent natural aggregation processes. Mass independent
aggregation rates correspond to an aggregation process where two clusters are chosen randomly
to merge. Aggregation rates proportional to the product of the two cluster masses correspond
to polymerization processes where two monomers are picked randomly to form a chemical
bond; consequently, their respective clusters are merged. The sum rate is a hybrid between the
two as it is an aggregation process where a randomly chosen monomer bonds with a randomly
chosen polymer. In this study, we focus on the two most widely used cases of constant and
product aggregation rates.

3. Constant aggregation rate

First, we discuss how the constant aggregation rate relates to polymerization in the presence
of traps. To treat this problem formally, one should write down the master equations with
inhomogeneous densities and add diffusion terms. Then, one should study these equations in
the trap-free region subject to the absorbing boundary conditions imposed by the traps. This
approach is not practical and the reaction-rate approach provides a powerful alternative [11–15].
The reaction-rate approach is roughly speaking an effective-medium theory that ignores the
complicated influence of each trap on the diffusion of particles and instead represents this
influence by averages. The reaction-rate approach was used by Smoluchowski to compute the
aggregation rate K (i, j) for Brownian particles. Assuming that merging happens immediately
upon collision, and that particles are spherical and have radii Ri and R j and diffusion
coefficients Di and D j , Smoluchowski obtained

K (i, j) = 4π(Di + D j )(Ri + R j). (3)

Stokes’s law shows that the diffusion coefficient of a Brownian particle is inversely proportional
to its radius, Dk ∼ 1/Rk ∼ k−1/3, and therefore the Brownian kernel becomes

K (i, j) ∝ (
i−1/3 + j−1/3

) (
i 1/3 + j 1/3

)
. (4)

Here, we ignored the overall multiplicative factor as it is irrelevant for the current discussion.
The master equations with this complicated Brownian kernel have not been solved even in

the case of pure aggregation. To simplify the analysis, Smoluchowski suggested to replace the
Brownian kernel (4) by the constant kernel. These two kernels have one common feature—
they are both invariant under the dilatation K (ai, aj) = K (i, j). Therefore, one expects that
both kernels lead to similar behaviours, and to a certain extent, i.e., as far as overall scaling
properties are concerned, this approximation is sensible [10].

A straightforward extension of equation (3) gives the freezing rate

fk = 4πn(Dk + D)(Rk + a) (5)
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where n is the density of traps that are assumed to be spheres of radius a and diffusion coefficient
D. The clusters are usually polymers whose molecular weight is small compared to the size
of the traps; hence Rk � a and Dk � D. Therefore fk = 4πanDk , yielding the mass
dependence

fk ∝ k−1/3. (6)

Thus, a constant aggregation rate together with spontaneous freezing approximate
aggregation of Brownian particles in the presence of traps. We stress that the use of a constant
aggregation rate instead of (4) is an approximation.

3.1. Constant freezing rates

Since the constant aggregation rate merely sets the overall timescale, we may conveniently set
its value K (i, j) = 2 without loss of generality. Let us first consider constant freezing rates,
fk = α. The master equation (1) becomes

dRk

dt
=

∑
i+ j=k

Ri R j − (2R + α)Rk . (7)

Here, we used the total density of reactive clusters, R = ∑
k Rk . In general, for mass-

independent freezing rates, it is possible to eliminate the freezing term from the master equation
by transforming the mass distribution Rk = Cke−αt and introducing the time variable

τ = 1 − e−αt

α
. (8)

The time variable τ grows from 0 to α−1 as the physical time increases from 0 to ∞. With these
transformations, the governing equations for the densities Ck reduce to the pure aggregation
case dCk/dτ = ∑

i+ j=k Ci C j − 2C Ck with the total density C = ∑
k Ck . We briefly recall

how to solve these equations. The total density obeys dC/dτ = −C2, and subject to the initial
condition C(0) = 1 the total density is C(τ ) = (1+τ )−1. Let us now introduce the exponential
ansatz C(τ ) = Aak−1 with A(0) = 1 and a(0) = 0 to satisfy the initial conditions. Substituting
this ansatz into the master equation and equating mass-independent and mass-dependent terms
separately yields d A/dτ = −2(1 + τ )−1 A and therefore A = (1 + τ )−2, and da/dτ = A,
leading to a = τ/(1 + τ ). The well known solution for the pure aggregation case is therefore

Ck(τ ) = τ k−1

(1 + τ )k+1
. (9)

Thus, the mass distribution of reactive clusters reads

Rk(τ ) = (1 − ατ)
τ k−1

(1 + τ )k+1
. (10)

The exponential mass dependence is as in the pure aggregation case. Also, the total density of
reactive clusters is R = (1 − ατ)/(1 + τ ), and as expected the reactive clusters do eventually
deplete R(t = ∞) = R(τ = 1/α) = 0.

The mass distribution of frozen clusters is found by integrating the equation dFk/dτ = αCk

with respect to time. Substituting (9), and using dτ/dt = (1 − ατ) = e−αt , the integration is
immediate and

Fk(τ ) = α

k

( τ

1 + τ

)k
. (11)

We see that in addition to the dominant exponential behaviour there is an additional algebraic
prefactor. The total density of frozen clusters F = ∑

k Fk is found by summation, F(τ ) =



Polymerization with freezing S4253

α ln(1 + τ ) and in particular the final density of frozen clusters is F(∞) ≡ F(t = ∞) =
α ln(1 + 1/α). Also, the final mass distribution of frozen clusters is

Fk(∞) = α

k

(
1

1 + α

)k

. (12)

In general, the mass distribution decays exponentially, but there is a k−1 algebraic correction.

3.2. Slow freezing

The most interesting behaviour occurs in the slow freezing limit: as α → 0, the final mass
distribution becomes algebraic,

Fk(∞) � αk−1. (13)

This power law holds over a substantial mass range, k � α−1. Beyond this scale, the tail is
exponential, Fk(∞) � αk−1e−αk .

The results in the slow freezing limit can be alternatively obtained using perturbation
theory. Indeed, the modified time variable coincides with the original time variable, τ → t
as α → 0, and the pure aggregation results are recovered. In other words, the freezing loss
term − fk Rk can be neglected in the master equation (1). Using this perturbation approach
we address two related problems: general freezing rates and aggregation in low-dimensional
systems.

Let us consider general mass dependent freezing rates fk . Dropping the loss rate
from the master equation, the reactive cluster density is as in the pure aggregation case
Rk = tk−1(1 + t)−k−1, given by equation (9). The mass distribution of frozen clusters is
obtained by integrating equation (2)

Fk(t) = fk

k

(
t

1 + t

)k

. (14)

We see that the algebraic prefactor k−1 is generic. Therefore, the final mass distribution is

Fk(∞) = k−1 fk . (15)

This behaviour applies for masses below some threshold mass k∗, while the mass distribution
sharply vanishes above the threshold. The threshold mass is estimated from mass conservation:

1 =
∑
k�1

k Fk(∞) ∼
k∗∑

k=1

fk . (16)

As argued above, for Brownian coagulation in the presence of traps, fk = βk−1/3. For slow
freezing, β � 1, we conclude that the final mass distribution is algebraic, Fk(∞) � βk−4/3,
below the threshold mass k∗ ∼ β−3/2.

The rate equation approach neglects spatial correlations as the probability of finding two
clusters at the same position is represented by the product of the probabilities of finding each
cluster separately at the same position. This mean-field approximation is valid only when the
spatial dimension exceeds the critical dimension dc [14, 15]. It is therefore interesting to study
the behaviour below the critical dimension.

We address here the point cluster model (PCM) where the radii and the diffusion
coefficients are both mass independent. In this case dc = 2. The lattice PCM is defined
as follows: clusters occupy single lattice sites and hop to adjacent sites with rate D; if a
reactive cluster hops onto a site occupied by another reactive cluster, both clusters merge. We
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assume that frozen clusters do not affect reactive clusters. The PCM without freezing can be
solved exactly in one dimension. When all lattice sites are initially occupied by monomers,
the density of reactive clusters of mass k is [16, 17]

Rk(t) = e−4Dt
[
Ik−1(4Dt) − Ik+1(4Dt)

]
(17)

where In is the modified Bessel function of order n. Here, we implicitly considered the slow
freezing limit. The density of frozen clusters is found from dFk/dt = fk Rk , that is of course
always valid. Using the identity

∫ ∞
0 dx e−x

[
Ik−1(x) − Ik+1(x)

] = 2, the final distribution of
frozen clusters is

Fk(∞) = (2D)−1 fk . (18)

Remarkably, the very same answer (18) is also found for the continuous version of the PCM.
The mass distribution (18) holds up to a certain threshold mass. For example, for the constant
freezing rate fk = α � 1 the threshold mass is k∗ ∼ √

D/α.

4. Product aggregation rate

The product aggregation rate K (i, j) = i j is equivalent to the Flory–Stockmayer gelation
model [3, 4, 18]. In this model, any two monomers may form a chemical bond and when this
happens the two respective polymers become one. Thus, the aggregation rate equals the product
of the cluster masses. In this polymerization process, a polymer network (‘gel’) emerges in
a finite time, and it is giant in the sense that it contains a finite fraction of the monomers in
the system. Eventually it grows to engulfs the entire system. This gelation model is also the
simplest mean-field model of percolation [19, 20].

As in the previous section, we analyse in detail mass-independent freezing rates, fk = α,
for which the master equation (1) becomes

dRk

dt
= 1

2

∑
i+ j=k

i j Ri R j − mk Rk − αRk (19)

where m is the total mass density of reactive clusters. If all clusters are finite in size then
m = M1 = ∑

k�1 k Rk where Mn = ∑
k kn Rk is the general nth moment of the distribution.

Again, we consider the monodisperse initial conditions Rk(t) = δk,1 and Fk(0) = 0.
Low order moments of the mass distribution obey closed equations and thus provide a

useful probe of the aggregation dynamics. The total mass density of reactive clusters satisfies
dm/dt = −αm, reflecting the loss due to freezing, and therefore

m(t) = m(0)e−αt . (20)

The total mass density decays exponentially with the physical time or, equivalently, linearly
with the modified time, m(τ ) = 1 − ατ . Furthermore, the second moment includes in
addition to the linear loss term a nonlinear term that accounts for changes due to aggregation,
dM2/dt = M2

2 − αM2. Solving this equation with arbitrary initial condition yields

M2(t) = α

[(
α

M2(0)
− 1

)
eαt + 1

]−1

. (21)

Divergence of the second moment signals the emergence of a gel in a finite time, i.e., the
occurrence of the gelation phase transition. Fixing the freezing rate, the initial conditions
govern whether gelation does or does not occur: gelation occurs when the initial mass is
sufficiently large, M2(0) > α, but otherwise there is no gelation. Conversely, fixing the



Polymerization with freezing S4255

initial conditions, gelation occurs only for slow enough freezing. For the monodisperse initial
conditions, the critical freezing rate is αc = 1. When gelation does occur, the gelation time is

tg = − 1

α
ln

(
1 − α

M2(0)

)
. (22)

The gelation point separates two phases. Prior to the gelation time, the system contains only
finite clusters that undergo cluster–cluster aggregation. Past the gelation point, the gel grows
via cluster–gel aggregation. We term these two the coagulation phase and the gelation phase,
respectively. The above expressions for the first two moments are valid for the coagulation
phase only.

The mass distribution of reactive clusters is found again by transforming the mass
distribution Rk = e−αt Ck and the time variable (8). With these transformations, the problem
reduces to the no-freezing case, dCk/dt = 1

2

∑
i+ j=k i jCiC j − kMCk with m = Me−αt .

Using the variable u(τ ) = ∫ τ

0 M(τ ′) dτ ′ and the transformation Ck = Gkτ
k−1e−ku , the

master equation reduces to a recursion equation for the time-independent coefficients Gk :
(k − 1)Gk = 1

2

∑
i+ j=k i j Gi G j . This equation is solved using the generating function

technique. The so-called ‘tree function’ G(z) = ∑
k kGkekz satisfies dG/dz = G/(1 − G)

and the solution of this differential equation obeys Ge−G = ez . The coefficients Gk = kk−2/k!
are found using the Lagrange inversion formula [21]. Hence, the mass distribution of reactive
clusters is

Rk(τ ) = kk−2

k!
(1 − ατ)τ k−1e−ku . (23)

The corresponding generating function R(z) = ∑∞
k=1 k Rkekz can be expressed in terms of the

tree function

R(z) = τ−1(1 − ατ)G(z + ln τ − u). (24)

Explicitly, the tree function is G(z) = ∑
k�1

kk−1

k! ekz .
The mass distribution (23) is only a formal solution because the total mass density m and

hence the variable u are yet to be determined. Prior to gelation, the solution can be obtained
in an explicit form because the various variables are known. From the first moment (20) then
M = 1 and therefore

u = τ (25)

for t < tg. In this case, the mass distribution decays exponentially at large masses and the
typical cluster mass is finite. When α > 1, there is no gelation transition, and this behaviour
characterizes the mass distribution at all times. Otherwise, when gelation does occur, the
gelation time (22) is simply τg = 1. The gelation point is marked by an algebraic divergence
of the mass distribution, Rk(tg) ∼ (1 − α)k−5/2, for large k.

Using the explicit expression for Rk prior to gelation,we can calculate the mass distribution
of the frozen clusters produced up to that point. Substituting (25) into the formal solution (23)
and integrating dFk/dt = αRk over time using dτ/dt = e−αt = (1−ατ) yields the distribution
Fk(tg) of frozen clusters produced prior to gelation (tg ≡ ∞ for α > 1)

Fk(tg) =




α

k2 · k!
γ (k, k) α � 1,

α

k2 · k!
γ (k, k/α) α � 1,

(26)

where γ (n, x) = ∫ x
0 dy yn−1e−y is the incomplete gamma function. When α � 1, this quantity

equals the final distribution of frozen clusters, Fk(∞) = Fk(tg). At large masses, the behaviour
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Figure 1. The total mass, the sol mass, and the gel mass versus the modified time τ for α = 1/2.

is as follows:

Fk(∞) �
{ 1

2 · k−3 α = 1,
A(α)k−7/2 exp [−B(α)k] α > 1,

(27)

where A = (2π)−1/2α2/(α − 1) and B = α−1 + ln α − 1. These asymptotic results were
obtained using the steepest descent method. Quantitatively, the mass distribution differs from
that obtained for constant aggregation rates. However, qualitatively, there is a similarity: there
is exponential decay above a critical freezing rate and algebraic decay at and below this critical
freezing rate. For the constant aggregation rate, the critical freezing rate vanishes, but for the
product aggregation rate the critical rate is finite.

At the gelation transition a giant cluster that contains a fraction of the mass in the system
emerges. Past the gelation point, two aggregation processes occur in parallel: in addition
to cluster–cluster aggregation, the giant cluster grows by swallowing finite clusters. Now,
reactive clusters consist of finite clusters (the ‘sol’) with mass s = M1, and the gel with mass
g. The total mass density is m = s + g. These three masses are coupled via the evolution
equations

dm

dt
= −αs, (28a)

ds

dt
= −αs − s(m − s)

1 − sτeαt
. (28b)

The initial conditions are m(tg) = s(tg) = 1 − α. The first equation reflects that, as long
as the gel remains reactive, mass may be converted from the reactive state to the frozen state
via freezing of finite clusters. The second equation follows from ds/dt = −αM1 − gM2,
obtained by summing (19). The second moment is written explicitly, M2 = Rz(z = 0) =
s/(1 − sτeαt ), using the aforementioned identity G ′(z) = G/(1 − G). The initial conditions
are m(tg) = s(tg) = 1−α. Once these equations are solved, the solution (23) becomes explicit.
We analyse this equation using perturbation theory in the limits α ↑ 1 and α ↓ 0 as detailed
in the appendix. For general freezing rates, we solve these equations numerically (figure 1).

In addition to the freezing of the finite clusters, the gel itself may freeze. One way
to characterize the gel is by its maximal possible size gmax = limt→∞ g(t). The limiting
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Figure 2. The maximal gel mass gmax versus the freezing rate α (solid line). Perturbation theory
results are shown using dashed lines.

behaviours are as follows (see the appendix):

gmax →

 1 − π2

6
α α ↓ 0,

C(1 − α)2 α ↑ 1,
(29)

with C = 1.303 892. The maximal gel size decreases as the freezing rate increases (see
figure 2). Just below the critical freezing rate, the gel is very small as its size shrinks
quadratically with the distance from the critical point g ∼ (1 − α)2; perturbation analysis
shows that this behaviour is generic and not limited to the maximal gel size. Therefore,
freezing is a mechanism for controlling the gel size: by using freezing rates just below the
critical rate, it is possible to produce micro-gels.

The gel freezes following a random Poisson process: its lifetime T is distributed according
to the exponential distribution

P(T ) = αe−αT . (30)

As long as the gel is active the system evolves in a deterministic fashion. When the gel freezes,
the total reactive mass exhibits a discontinuous downward jump (figure 3). Since the gel
freezes according to a random process, the mass of the frozen gel is also a random variable.
Moreover, this quantity is not self-averaging as it fluctuates from realization to realization.

When the gel freezes, the system consists of finite-mass clusters only, and therefore the
system re-enters the coagulation phase. The system may then undergo a second gelation
transition, that ends when the gel freezes. Therefore, the evolution is cyclic, with the system
alternating between the coagulation and gelation. For the same reason that the gel mass
fluctuates, so is the number of frozen gels produced a fluctuating quantity.

The number of gels produced is in principle unlimited, i.e., there is a finite probability
Pn > 0 that n gels are produced. Since the second moment diverges at the gelation transition
according to (21), it is necessarily larger than the freezing rate at some finite time interval
following the gelation transition. If the gel freezes during this time interval then a successive
gelation is bound to occur. We also note that the evolution in the coagulation phase is
deterministic and, for example, the first two moments follow equations (20) and (21). The
‘initial’ conditions are given by the state of the system when the gel freezes.

It is therefore natural to ask: what is the probability that multiple gels are produced? This
is the probability that the gel freezes prior to time t∗ given by M2(t∗) = α. Using the second
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Figure 3. The mass density m (MASS) versus time τ (TIME). The system alternates between the
coagulation phase and the gelation phase. In the former phase the mass decreases linearly according
to (20) such that depletion occurs at time τ = 1/α. In the latter phase, the active mass decreases
more slowly than linearly according to (28). The gelation phase ends when the gel freezes.
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Figure 4. The multiple gel probability Pmult versus the freezing rate α (solid line). Perturbation
theory results are shown using a dashed line.

moment M2 = s/(1 − sτeαt ) this condition simplifies to

s(t∗) = αe−αt∗ . (31)

The probability that multiple gels are produced is obtained by integrating (30) up to this time,
Pmult = ∫ t∗−tg

0 dT P(T ), with the limiting behaviours (see the appendix)

Pmult →



α ln
1

eα
α ↓ 0,

0.450 851 α ↑ 1.
(32)

This probability increases as the freezing rate increases (figure 4). It is generally substantial
and, moreover, it exhibits a discontinuity at α = αc.

We now address the final mass distribution of frozen gels. Analytic treatment of the
successive gelation phases is difficult due to the stochastic nature of the freezing process.
Numerically, there are two ways to treat the problem. One may integrate the rate equations (28)
up to the gel freezing time that is distributed according to (30) and then repeat this procedure
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Figure 5. The final mass distribution of the frozen clusters for α = 1/2. The simulation results
represent an average over 102 independent realizations in a system of mass N = 106.

if a successive gelation occurs. We prefer Monte Carlo simulations where, since the system
is finite, there is no need to distinguish the gel from the finite clusters. In the simulations,
we keep track of the total aggregation rate Ra = N(M2

1 − M2)/2 and of the total freezing
rate Rf = αN M0 , where N is the number of monomers. Aggregation occurs with probability
Ra/(Ra + Rf), and freezing occurs with the complementary probability. A cluster is chosen for
aggregation with probability proportional to its mass. Time is augmented by �t = 1/(Ra + Rf)

after each aggregation or freezing event.
For the case α < 1, numerical simulations provide convincing evidence that the tail

behaviour

Fk(∞) ∼ k−3, α < 1 (33)

is universal (figure 5). This indicates that frozen clusters produced during the coagulation
phase dominate at large masses as every such phase is expected to contribute k−3 to the tail
according to equation (27). Intuitively, this is clear because large clusters are quickly merged
into the gel, and therefore frozen clusters produced in the presence of the gel tend to be small.
Interestingly, freezing leads to a new critical exponent in mean-field percolation.

5. Conclusions

In summary, we have studied aggregation processes with freezing. For constant freezing rates,
the problem can be formally reduced to the no freezing case. The mass distribution of frozen
clusters resembles the mass distribution of reactive clusters, decaying exponentially at large
masses, when the freezing is sufficiently fast. Novel behaviour emerges when the freezing
rate is slower than some critical value. In this case, the mass distribution of frozen clusters
decays algebraically. For constant aggregation rate the critical freezing rate is zero, but for the
product aggregation rate it is finite.

For the product aggregation rate, the freezing rate controls the gelation process. If it is
sufficiently high no gelation occurs,and if it is just below the threshold micro-gels are produced.
If one gel is produced, then multiple gels are possible. In this case, the mass of the gels and
their number are both controlled by a random process, and as a result they fluctuate from
realization to realization. The system exhibits a series of gelation transitions and it alternates
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between ordinary coagulation and gelation. The random freezing process governs the number
of percolation transitions as well as the mass of the frozen gels.

The behaviour when freezing occurs spontaneously is quite different from that found
when freezing is reaction induced (upon merger a cluster may freeze with some fixed
probability) [22, 23]. For the constant aggregation rate, the mass distribution is always algebraic
and the characteristic exponent is non-universal as it depends on the freezing probability.
For the product aggregation rate, the gelation transition is always suppressed, because the
probability that a cluster remains reactive decays exponentially with the number of merger
events.

There are many open questions raised by this study. For example, it will be interesting
to investigate the behaviour in low-dimensional systems where the rate equation approach no
longer holds. Additionally, the exponent characterizing the mass distribution of frozen clusters
represents a novel critical exponent in percolation processes and this should be a challenging
problem below the critical dimension.

One can also investigate situations where there is a source of monomers. In the long-time
limit, the densities of reactive clusters become stationary, and the characteristics of such steady-
state solutions have been investigated in [24–26], especially in the case of mass-independent
rates of aggregation and freezing. It may be interesting to study the accumulation of frozen
clusters, particularly frozen gels in the model with product aggregation rate.

Appendix. Perturbation analysis

A.1. α ↑ 1

To investigate the behaviour in the time domain 1 < τ < α−1, we make the transformation
τ = 1 + (α−1 − 1)x with 0 � x � 1. The governing equations (28) become

dm

dx
= − s

1 − x
(A.1a)

ds

dx
= − s

1 − x
− s(m − s)

α
(
1 − x − s

1−α

) − sx
. (A.1b)

The initial conditions are now m(0) = s(0) = 1 − α. When α ↑ 1, we perform perturbation
analysis using the small parameter ε = 1 − α. Given the initial conditions m(0) = s(0) = ε,
we write

m = εF1 + ε2 F2 + · · · s = εG1 + ε2G2 + · · · . (A.2)

Substituting these expansions into the governing equations (A.1a) and (A.1b) and keeping
only dominant, linear in ε, terms, we obtain

dF1

dx
= − G1

1 − x
, (A.3a)

dG1

dx
= − G1

1 − x
. (A.3b)

The initial conditions are F1(0) = G1(0) = 1. Solving these equations, we find

F1 = G1 = 1 − x . (A.4)

Thus, the gel mass vanishes to first order in ε, and we should consider the second order terms.
The second order terms are coupled according to

dF2

dx
= − G2

1 − x
(A.5a)

dG2

dx
= − G2

1 − x
+ (1 − x)

F2 − G2

G2 + x(1 − x)
. (A.5b)
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The boundary conditions are F2(0) = G2(0) = 0. We seek the non-trivial solution with the
following derivatives at the origin: F ′

2(0) = 0, and G ′
2(0) = −2.

To find the probability that multiple gels are produced, we notice that the Poisson
distribution (30) is uniform in terms of the transformed time, P(x) = 1 and therefore
the probability of forming multiple gels is simply Pmult = ∫ x∗

0 dx P(x) = x∗. Also, the
condition (31) becomes s(x∗) = α(1 − α)(1 − x∗). Substituting the perturbative expansion
ε(1 − x∗) + ε2G2(x∗) = ε(1 − ε)(1 − x∗), this condition becomes G2(x∗) = x∗ − 1. It also
implies G2(1) = 0. Numerical integration yields Pmult = x∗ = 0.450 81.

To find the maximal gel mass, we write g = m − s = ε2(F2 − G2) and use G2(1) = 0.
Thus, the maximal gel mass gmax = g(x = 1) is

gmax = (1 − α)2 F2(1). (A.6)

Integrating these equations numerically, we determine F2(1) = 1.303 892. Moreover, the
perturbation analysis shows that in general the gel mass vanishes quadratically close to the
critical freezing rate, g ∝ (1 − α)2.

A.2. α ↓ 0

When freezing is slow, we may drop the freezing loss term −αRk from the master equation (19)
as done in section 3. The problem therefore reduces to the no-freezing case where u = τ = t
and thus the generating function (24) is R(z, t) = t−1G(z + ln t − t). Invoking the identity
Ge−G = ez , the sol mass s = R(z = 0) satisfies s = e−(1−s)t . In the long time limit,

s(t) = e−t + te−2t + · · · . (A.7)

From the one-gel criterion (31) and (A.7) we obtain t∗ = 1
1−α

ln 1
α

. Finally, using Pmult =
1 − exp[−α(t∗ − 1)], we find the multiple-gel probability: Pmult � −α ln(eα).

To leading order, the total mass m remains constant. Using the exact governing equation
dm/dt = −αs, we derive the first order correction:

m(t) = 1 − α − α

∫ t

1
dt ′ s(t ′). (A.8)

The maximal mass of the gel is therefore

gmax = 1 − Bα, B = 1 +
∫ ∞

1
dt s(t). (A.9)

Using t = −(1 − s)−1 ln s we change the integration variable and then transform the integral:

B = 1 +
∫ 1

0
ds s

[
1

s(1 − s)
+

ln s

(1 − s)2

]
. (A.10)

Performing the integration, we find B = π2/6.
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